Ultralight Single‐Walled Carbon Nanotube Aerogels for Low‐Frequency Sound Absorption
نویسندگان
چکیده
In the article number 2200357 Tomonaga Ueno, and co-workers report an ultralight single-walled carbon nanotube (SWCNT) aerogel for low-frequency sound absorption, with a hierarchical porous structure high-modulus framework. The Biot–Johnson–Champoux–Allard model indicates significant effect of high elastic modulus SWCNT on absorption.
منابع مشابه
Gas Diffusion, Energy Transport, and Thermal Accommodation in SingleWalled Carbon Nanotube Aerogels
The thermal conductivity of gas-permeated single-walled carbon nanotube (SWCNT) aerogel (8 kg m − 3 density, 0.0061 volume fraction) is measured experimentally and modeled using mesoscale and atomistic simulations. Despite the high thermal conductivity of isolated SWCNTs, the thermal conductivity of the evacuated aerogel is 0.025 ± 0.010 W m − 1 K − 1 at a temperature of 300 K. This very low va...
متن کاملUltralight and highly compressible graphene aerogels.
Chemically converted graphene aerogels with ultralight density and high compressibility are prepared by diamine-mediated functionalization and assembly, followed by microwave irradiation. The resulting graphene aerogels with density as low as 3 mg cm(-3) show excellent resilience and can completely recover after more than 90% compression. The ultralight graphene aerogels possessing high elastic...
متن کاملUltralight anisotropic foams from layered aligned carbon nanotube sheets.
In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recover...
متن کاملUltralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose.
Carbon-based aerogels, composed of interconnected threedimensional (3D) networks, have attracted intensive attention because of their unique physical properties, such as low density, high electrical conductivity, porosity, and specific surface area. As a result, carbon-based aerogels are promising materials used as catalyst supports, artificial muscles, electrodes for supercapacitors, absorbent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Engineering Materials
سال: 2022
ISSN: ['1527-2648', '1438-1656']
DOI: https://doi.org/10.1002/adem.202270036